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By studying transfer matrix eigenvalues, correlation lengths for a mean field 
directed percolation model are obtained both near and far from the critical 
regime. Near criticality, finite-size scaling behavior is derived and an analytic 
technique is provided for obtaining the finite-size scaling function. Our methods 
involve the generating function, matched asymptotic expansions, and certain 
formulas developed for the study of eigenvalues of the transfer matrix for 
metastability. 
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1. I N T R O D U C T I O N  

Directed percolat ion provides a f ramework for a variety of stochastic pro-  
cesses. As such, phase transition terms, such as percolat ion threshold or  
correlation length, take on meaning  for the stochastic process. Conversely, 
we may sometimes phrase directed percolat ion as a t ime-dependent pro- 
cess. In this article we employ an epidemic metaphor ;  for more  extensive 
treatment of epidemic models see ref. 1. It  is also possible to describe the 
process in terms of chemical reactions; another  application is to 
astrophysics. (2"3) F o r  the epidemic models in particular, finite-size effects 
may  be of interest because of quarantines,  or  in general because popula t ion  
sizes are far smaller than the numbers  usually relevant in physics or  
chemistry. In this article we obta in  analytic results for the extinction time 
of  an epidemic due to the finiteness of  the populat ion.  In the ne ighborhood  
of  the value of  the disease transmission probabil i ty for which the disease 
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takes hold (i.e., the percolation threshold) there is a data collapse in 
rescaled variables. The scaling function, which summarizes that collapse 
and which is usually only known numerically, is here obtained as the eigen- 
value of a certain Schrrdinger-like equation. 

In ref. 4, two infinite-range mean field directed percolation problems 
were introduced and their correlation length was studied using the transfer 
matrix. For directed percolation, a correlation "length" is defined for the 
time direction, and it is related to the first nontrivial eigenvalue of the 
transfer matrix. Extensive numerical work in ref. 4 established finite-size 
scaling properties of the model both near and away from criticality. Data 
collapse, the absence or presence of various N dependences, and other 
spectral properties of the transfer matrix were observed. 

The second model of ref. 4 (called single-step percolation) can be 
described as the propagation of a disease (whimsically named percolitis(3)): 
at each time step, one sick person can become spontaneously healthy, or 
can infect a healthy person with probability p. As indicated, this problem 
was studied numerically and the results showed agreement with finite-size 
scaling predictions 4 both away from criticality and in the infinitesimal 
neighborhood of the critical value (Pc). In the course of observing data 
collapse, the form of the finite-size scaling function was obtained numeri- 
cally. In the present paper, we give analytic arguments explaining and 
extending the results of ref. 4. We start from the master equation for the 
model and use the generating function formalism, matched asymptotic 
approximations, and the method of ref. 6 for estimates of the first eigen- 
value. The relevance of ref. 6, which is concerned with estimates of the 
metastable lifetime for escape from a potential well, is not obvious. 
Although we here deal with a metastable state, it is not the Fokker-Planck 
equation to which we apply ref. 6, but rather an equation for the generating 
function. As such there does not seem to be any a priori need for it to 
display the characteristic metastable well structure. 

In Section 2, we recall the model and the evolution equation for the 
generating function. In Section 3, we study the first eigenvalue (and the first 
eigenstate) away from criticality; the result is that a good approximation to 
the first eigenstate is given by a truncation of an "unphysical" solution of 
the stationary master equation. Well above the transition, that eigenvalue 
is known to differ from unity by an exponentially small term of the form 
exp(-N-const ) .  In this article we obtain an analytic expression for that 
"constant" as a function of the percolation probability. In Section 4, we 
study the scaling behavior exactly at criticality, and in Section 5, we obtain 

4 See ref. 5 for extensive background on finite-size scaling. 
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the first eigenvalue near the critical value. The results of Section 5 yield an 
effective analytic technique for the calculation of the finite-size-scaling 
function. 

2. S I N G L E - S T E P  P E R C O L A T I O N  M O D E L  

We recall the single-step percolation model that was introduced and 
treated numerically in ref. 4. At time t, a total population of N persons 
contains n(t) sick people. To  reach the next time step t + A t ,  where 5 
At  = 1/N 2, the state evolves as follows: 

(i) One chooses randomly a person called A among the N persons. 

(ii) If A is healthy, nothing happens. 

(iii) If A is sick (which has probability n/N), either he becomes 
healthy with probability 1/N, or he meets another person called B at 
random among the remaining N -  1 persons. If B is sick, nothing happens, 
but if B is healthy, B becomes sick with probability x/N,  where x is a given 
positive number. 

The nontrivial transition probabilities in the time step At for this stochastic 
process are as follows: 

n l  
Pr(n --* n -- 1 ) = 

N N  

n ( N - n )  x 
Pr(n--* n + 1 ) =  (2.1) 

N ( N - 1 ) N  

n 1 n ( N -  n) x 
Pr(n ~ n) = 1 

N N  N ( N - 1 ) N  

Let P(n, t) be the probability that the number of sick people at time t 
is n. From (2.1) we can derive the master equation whose continuous-time 
limit is found by computing [P(n,  t + At)  -- P(n, t )] /At .  We obtain 

~?P(n, t) (n -- 1 ) ( N -  n + 1 ) 
Ot = (n + 1) P(n  + 1, t) + N -  1 xP(n  - 1, t) 

x(N-_n)] 
- n  1 +  N - - 1  _]P(n , t )  (2.2) 

s We take At = 1/N 2 to reproduce the same time scaling as for the multistep model in which 
each individual contacts everyone else on every time step. 
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The mean field theory associated with this master equation can be 
obtained starting from either Eq. (2.2) or the chemical reaction model 

S 1 , H  

(2.3) 
S + H  X , 2 s  

(S for sick, H for healthy, the rates being 1 and x, respectively), so that 

dS 
- -  = x S H -  S = - S [ x S  + 1 - x ]  (2.4) 
dt 

It is clear that S = 0 is stable if x < 1 (the whole population gets healthy) 
and that S = 1 - 1Ix is stable for x > 1 (a nonzero fraction of the popula- 
tion is sick). 

Remark. It is natural to attempt to take a continuum limit for the 
variable n/N in Eq. (2.2). This has proved surprisingly unilluminating, 
perhaps because derivatives (with respect to this variable) of the probabil- 
ity function grow with iV, and therefore the neglect of higher derivatives in 
a proposed development of (2.2) is not justified. These considerations 
motivated the use of the method that we now present. 

We use the generating function 

N 

f(s, t)= ~ s"P(n, t) (2.5) 
n=0 

associated with the probability distribution P(n, t). If P(n, t) is a solution 
of (2.2) which does not correspond to a physical solution [because 
P(n,t)#O for n>N],  we shall still use formula (2.5), with the sum 
extended from n = 0 to n = oo. 

To obtain the evolution equation for f(s, t), we multiply (2.2) by s" 
and sum over n using the following identities: 

~. s"(n+ l )P(n+ l)=~s 
n>~O 

, 20f sn(n--1) P ( n - 1 ) =  s ~s 
n>~O 

3 02f 2 0f ~" s n n ( n - 1 ) P ( n - 1 ) = s  ~ - j + 2 s  8s 
n~>O 

. 2- ,  , 2 0 z f .  Of 
s n r t n ) = s  7s2+S~s  

n>~O 



Finite-Size Scaling for Mean-Field Percolation 

It follows that the evolution equation for f(s, t) is 

&f ( l _ s )  r xs2 8"f ~f] 
&t = L N _ l  Ys2+(1-xS)~s  

617 

(2.6) 

3. S T A T I O N A R Y  S O L U T I O N S  OF T H E  M A S T E R  E Q U A T I O N  
A N D  THE CASE x > l  

Consider the stationary equation for the generating function 

xs 2 c~2f . (1 O f  
N _ l ~ s  2+ - x s l ~ s - O  

which has two independent solutions: 

f(s) = C (constant) 

\ x s  / 

(3.1) 

(3.2) 

(where ~ is a constant different from 0). A priori the physical solution 
should be a polynomial in s and we would therefore reject (3.2). This leaves 
(3.1) as the physical solution. The probability distribution associated with 
(3.1) is 

Po(n) = 6o, n (3.3) 

which corresponds to extinction of the disease. This seems to contradict the 
mean field analysis for x > 1, which predicts a nonzero level of sick people, 
1-1 /x .  The explanation is that the stable mean field state S =  1 -  1/x 
becomes unstable in the finite-N birth-and-death process defined in 
Eq. (2.1). The decay of this macroscopic state is given by the first eigen- 
value of the master equation, Eq. (2.2), and it will be proved below that for 
x > 1 that eigenvalue is related to the "unphysical" solution (3.2). 

A way to see this is to use a method similar to that employed in ref. 7. 
Thinking in terms of the chemical reaction model, one introduces a reverse 
reaction 

H *--~S 

with a rate k, which modifies the master equation as follows: 

(3.4) 
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8P(n, t) 
8t = (n+ 1) P(n+ 1, t) 

+ F ( n -  1 ) ( N - n +  1) 

L N - 1  
x + k ( N -  n + 1 )1 P(n - 1, t) 

I n ( N - n )  ] 
- n § N------~ x + k ( N -  n) P(n, t) (3.5) 

Because of the exponentially (in N) long lifetime of the metastable state in 
the mean-field directed-percolation process, an extremely small k will be 
sufficient to neutralize the slight tendency of the disease to disappear. This 
is why the properties of the metastable state to be derived by the small-k 
approximation will be insensitive to the actual value of k. That is, k can be 
made small enough so as not to affect the shape or other properties of the 
metastable state, but large enough to make sure the metastable state does 
not die out. 

The evolution equation for the generating function becomes 

8 f - ( 1 - s )  F xs2 d2f - x s ) ~ - k N f ]  (3.6) 
L N -  1 8s 2 F (1 + ks 

The stationary solution of this equation can also be found. If we write 

f(s)  = Z s"a. 
n>~O 

then the coefficients an satisfy a recursion formula with two terms 

X 

N - 1  
n(n - 1) an + (n + 1) an+ 1 -- ( x - k )  nan-kNan = 0  

which can be solved by the formula 

( x )n(nN ) ( k ( N - 1 ) )  an=ao ~ ( n - 1 ) ! r  ,n - -1  , n<~N 

a~=0 n> N 
(3.7) 

where we have defined 

j = l  

(3.8) 
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and ao is a normalization constant. In particular, we now obtain a 
nontrivial "physical solution" for k # O. For the generating function we now 
use Eq. (2.5), f(s)= N n Y~,=o a,s ,  and rearrange this sum to obtain 

f (s)=a o I + k ( N - 1 ) N !  
x 

N--I(_~)msN--m ( k ( ~  1) )] 
x ~ m ! ( N _ m ) ~  , N - m - 1  (3.9) 

m ~ O  

If we replace all the ff's by 1 for k tending to 0, the summation 

sN_,  ( ,%=_, ) otT) m! ( N - m )  q) , N - m - 1  

becomes 

['s,N_iN--' 1 (N--I) m 
Z -~. \  xs' J ds' (3.10) 

~0 m = 0  

The truncated series of degree ( N - 1  ) for e x p [ ( N - 1 ) / x s ' ]  appears in 
(3.10), leading to formula (3.2) in the limit k tending to 0. This is the 
reason why the "unphysical" state (3.2) approximates the first excited state. 

We now return to the case k = 0 and study the first excited state Pl(n) 
of the master equation (2.2), 

(n - 1 ) (N-  n + 1) xP1 (n - 1) piP~(n)=(n+l)P~(n+l)-t N - 1  

F x ( N - n ) ]  
, L 1 + ~ j Pl(n) 

The state P1 is orthogonal to the adjoint of P0 [given in (3.3)1, which 
leads to the condition 

N 

E Pa(n) = 0 
n ~ O  

We define 
N 

f l ( s ) =  ~ snp,(n) 
n = O  

so that f l ( 1 ) = 0 .  As discussed before, formulas (3.10) and (3.2) suggest 
that we should take as a trial function for ./'1 the function .~: 

fl " N - 1 1  ds' 
?,.(~)= s ' ' - '  E ~ xs / 

m ~ O  

(3.11) 
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The eigenvalue equation for f l  is obtained from (2.6), 

x 2 ~3~fl + (1 _ xs) (3.12) 
/ ~ l f ~ = ( 1 - s )  -~--~s c9s2 

Let us use a bracket to denote the truncation of the exponential series 

I-er = ~ 
l=0 

Then we compute from (3.11) 

[ (--~)] aJ71 s~V-x exp 
a s  = ~ ~_ ,  

[ (._1)] 
82f~ ( N - 1 ) s  u- :  exp 
~$2 -- N-- 1 

N - 1  sU-3(N--1)Iexp(--~s 

so that if we put (3.11) into (3.12), we obtain 

# a L = ( I _ s )  sN_ I 1 (N-1~ N-I 
( U -  1 )-----~ \ ~ 7  (3.13) 

We next determine #i using matched asymptotics at s =  1 in (3.13), 
namely we divide by s -  1 and let s ~  1 [using the fact that f l ( 1 ) = 0 ] ,  so 
that 

N--1 1 ( - ~ )  m (S--1 1)[ (Nx1)N-] 
#1 ~__ o ~.1 = ~ (3.14) 

To estimate the left-hand side of Eq. (3.14), we use the Taylor formula with 
integral remainder. We have 

N-~ 1 / N - 1  \m ox~(~) ~o~x)  
( ~ T  ~ ~ ( ~ )  = (N- - l ) !  exp .t( 1) ( l_ t )N_~d  t 

But 

~ ] e x p ( t ( ~ - - l ! ) ( 1 - t )  N-1 dt 
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The form log(1 - t) + t /x has a critical point at tc = 1 - x, so that for x > 1, 
there is no critical point in [0, 1 ] and the integral goes asymptotically like 

1 

( N -  1) I 1 -  1/x[ 

and finally 

:N_I  exp , - -7 - ' -  L 
\ / m=O " 

( (N- 1)(1-1ogx) 
,-~ exp \ ( x -  1)[-2~z(N- 1)] 1/2] 

~ exp ( ~  --~ ) (3.15) 

so that the error is much smaller than e x p [ ( N -  1)/x] for x >  1. For x =  1, 
the function log(1 - t) + t /x  has a critical point precisely at the endpoint of 
integration, tc = 0. Therefore 

, 1 (  27z ~ '/2 
f o e X p { ( N - 1 ) f t + l o g ( 1 - t ) l } d t - ~ k ~ S - ~ j  exp(N-  1) 

and for x = 1 

W--1 1 )m 1 
exp(W-- 1)-- ~ ~.T (N-- 1 ~ e x p ( N -  1) 

m = 0  

F o r  x >  1, because of formula (3.15), we can replace the truncated sum in 
the first term of (3.14) by e x p [ ( N - 1 ) / x ]  and we obtain 

/11----exp [ ( N -  1) ( 1 - - 1 - 1 ~  X ) l x  (3.16) 

For x near 1, we obtain 

/~i - exp  [ - ( N -  1) ( x 2  1)21 -~ (3.17) 

This last formula was given in ref. 4, Section 6, and was checked 
numerically for x = 1.002, 1.004 ..... 1.300. In Fig. 1 we show how the data of 
Fig. 5 of ref. 4 are fit by Eqs. (3.16) and (3.17). Therefore Eq. (3.16) gives an 
explicit analytic expression for the asymptotic coefficient of N in the 
exponentially long lifetime of the metastable disease state (for x > 1 ). 
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Fig. 1. Data of Fig. 5 of ref. 4 fit to Eqs. (3.16) and (3.17). The solid line corresponds to 
Eq. (3.16) and the dashed line to Eq. (3.17). 

Finally, we can again use formula (3.15) to obtain an estimate for the 
form and properties of the metastable state. This will be the first "excited" 
state and has weight Q(n) with Q(0)= 0 and Q(n)= Pl(n). The generating 
function F of this metastable state is therefore the same as the generating 
function j7 x of the excited state, except that F ( 0 ) = 0  instead of f l ( 1 ) = 0 .  
It follows that 

-o =o~5 (3.18) 

Using (3.15), we can replace the truncated series in (3.18) by 
exp[(N--1) /xs ' ]  for x >  1 and obtain 

F(s)=f~exp[(N-1)~(s')]ds ' with ~ ( s ' ) =  1-~+l~ 

We want to estimate 

1 0F s=l <"> = ~ s  
[-Ze2F 1 ~ 2 <"~>-<">2=Lros2 e2(~ F) +~-S~ , = ,  

Near s = 1, the function ~ is increasing. For  convenience, we define a new 
variable r = 4 ( 1 ) -  ~(s'), so that s ' -  1 ,-~ - r  and 

F ( 1 ) =  e-(N-l)r e (N-  1) r 
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But 

�9 ' (s ' )  ~ 4 ' ( 1 )  

so that finally 

F(1)~,e(N_l)q~(1)[ ' 1 
(N--  1) # ' (1 )  

~" ( I )~  

05'(1) 

qs"(1) 1 ] 

+ r ( N -  ] 7  + "'" 

Now 05'(1) = 1 - 1Ix and 05"(1) = ( 2 / x ) -  1. We thus deduce 

which recovers the mean field equilibrium value. Moreover, the cumulant 
is now 

1 
(n  z ) -  ( n )  2,~ ( N -  1 ) -  

x 

The smallness of this quantity supports the use of the mean field equations. 
It is remarkable that this cumulant does not grow near x = 1, the critical 
point. 6 (Note that the cumulant for the stable state, which is relevant for 
x < 1, is obviously small.) 

Full justification of the time-dependent mean field approximation 
[Eq. (2.4)] would require showing that as a function o f  time the cumulant 
rapidly became small. For  this one would need more information than 
just the asymptotic state of the system (stable or metastable, as the case 
may be). 

4. ANALYSIS AT THE CRITICAL POINT 

At x = 1, the analysis of Section 3 breaks down for several reasons, 
principally that the estimate coming from (3.14) is no longer valid because 
it leads to.#1 = O(1). In the case x =  1, Eq. (3.12) becomes 

i s  ,~2f~ /'qfl=(1-s) N-1 Os 2 J-(1-s) (4.1) 

and we see that this equation has an irregular singularity at s = 1. We 
analyze the critical point behavior by rescaling near s = 1. Let 

= (1 - - s )  N ~ (4.2) 

6 Our proof does not hold exactly at x = 1, since our estimates are for fixed x > 1 and N ~  oo. 
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Now, thecr i t i ca l  behavior is due to a balance between the various 
processes of (2.1), or, at the generating function equation level, between the 
two terms of (4.1). This means that we must choose ~ in (4.2) so that both 
terms on the right-hand side of (4.1) give contributions of the same size. 
This forces c~ = 1/2 and the equation becomes 

1 . - ~ 7 5  N _  1 c~r # i A = ~ 7 7 ~  g 1 ~2 (4.3) 

This will have an N-independent limit if we take 

Yl 
#1 = V / -  ~ (4.4) 

and to leading order f ,  satisfies 

~2f, r afl (4.5) 
= 77 

We define a new variable r/= (2~) m, so that 

We define a new function h by f = ~bh, where 

~' 1 r/3 
+ 

q~ 2r/ 4 

The function h therefore satisfies the Schr6dinger-like equation 

vh - i t , , , _  Vo h (4.6) 

where 

3 , 2  
V0=~ ~ = ~--~2 - ~ r# +~--~ (4.7) 

We see finally that exactly at criticality the eigenvalue of the first 
excited state f i  of the master equation rescales as 

#1 = vl  N -  1/2 

where vl is the ground-state eigenvalue of the Schr6dinger equation (4.6). 
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Remark. The relation between f and h is 

h = ~ exp ( -  -~-6) f 

When f =  1 (which corresponds to p = v = 0), h is not square integrable at 
r/=O, so that the trivial ground state of the master equation does not 
produce an L 2 eigenstate of the corresponding Schr6dinger equation. On 
the other hand, the first excited state of the master equation satisfies 
f l s= l  =0,  so that f l~=0=0 ,  and it thus yields an L 2 eigenstate of the 
Schr6dinger equation. 

5. A N A L Y S I S  N E A R  T H E  C R I T I C A L  P O I N T  

In this section, we investigate the neighborhood of the critical point as 
in ref. 4 (Section 7) and we define the parameter ~ by 

c~ 
x =  1 + N m  (5.1) 

Again we define r as in (4.2) with the exponent 1/2 and v as in (4.4). 
The equation for f to leading order now becomes 

O 2 

As in Section 4, we change the independent variable and introduce a new 
function, to obtain 

[1 e 2 i r/3 ~r/'~ a 
+ f (5.2) g 

7 - T I  

and 

-- vh = -~-h" 2- + V=(tl)h 

where 

~b' 1 ~/3 st/ 
r/= (2~) m, f =  ~bh, - - =  4 . . . .  

,/, 2r/ 4 2 

and V= is defined by 

3 r/2 v=(,7) = ~-~ + Y+55 

(5.3) 

(5.4) 

822/70/3-4-8 
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5 

~'~". 

3 . . . . . . . . .  i . . . .  ..w! ~ . . . . . . . . .  _ 

0 

-1 
0 1 2 3 4 5 6 7 8 

Fig. 2. Data  of Fig. 8 of ref. 4, with values derived from the eigenvalue problem, Eq. (5.3), of 
the present paper given as circles. What  is plotted is log[e/Iv(e)l]  vs. e2 (which is the same 
as the Fig. 8 plot of ref. 4). 

In Fig. 2 we show the results of a numerical calculation of the eigen- 
value v of the "Schrrdinger equation" (5.3) for positive ~. We plot the same 
quantity that is plotted in Fig. 8 of ref. 4, namely log[~/lv(~)l] versus ~2. 
For small c~ the agreement is quite good. 

We next investigate the ground state of Eq. (5.3) in the limiting cases 
~ ----~ -4-00. 

Remark. For convenience in comparing ref. 4 ("4") and the present 
article ("pa"), we note the following notational correspondences: 
[ ] . ~ ] p a  ~ ' ~  r - 1 / ~ l [ ] 4 ,  [ - ( x ' ] p a  <--.-~ [ S ] 4 ,  and [v(~)]pa ~--~ [ - - I / X ( s ) ] 4 .  

Firs t  C a s e :  a ~ - ~ .  Let us compute the minimum of V,(r/). 
See Fig. 3 for a graph of V, for large negative ~. For ~ tending to infinity, 
we obtain an approximate root of the equation 

0 = ?~3 V t  (~ ] )  = _ ~ . . ~  ~ . . ~ T ~  4 ~ 6 - -  _ ( 5 . 5 )  

by neglecting the terms - � 8 9  �89 + ~6t/s. Thus, 

31/4 
r/= ~ I~11/2 and V~(r/~) ~ I~1 (5.6) 

This is the only possible root for ~ - o o .  Near the minimum of the 
potential, the Schr6dinger equation reduces to 

1 h" /'3 1 /~2~2"~ 
- v h =  - ~  + ( ~ F + - T - )  h (5.7) 
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Fig. 3. 
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The function V~ of Eq. (5.4) for the case of large negative e (c~ = -10). 

This equation is well known (see ref. 8, Chapter 3). It is of the form 

~ -~r2 + E -  - Br  2 h = 0  (5.8) 

where A = 3/8, B = e2/8, v = - E .  The ground state is exactly 

E =  ]~1 
so that 

v = - [ e l  (5.9) 

which coincides with the result of ref. 4, Section 7 [Eq. (7.3)]. 

Second  Case: a ~ -I-oo. This case is more subtle because one is 
dealing with a ground state that is in a sense metastable. That is, large 
positive a will have a first excited state that is a precursor of the exponen- 
tially long-lived state associated with x >  1 (and x - 1  a fixed, positive 
N-independent quantity). See Fig. 4 for a graph of V~ for large positive 
and also see the remark below for an analytic treatment of the qualitative 
features of V~. We return to the Fokker-Planck equation (5.2) and use the 
method of ref. 6 to estimate the bottom of the spectrum. 

We define 

ll = - 2 v  (5.10) 

and we have the backward Fokker-Planck equation 

02 
(5.11) 
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Fig. 4. 
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The function V~ of Eq. (5.4) for the case of large positive ct (ct = 10). 

where 

G;(n) = ! + ~3 

Let L be the operator for the forward Fokker-Planck equation. It is given 
by 

0 2 
t ~  t 

Or/2 + ~ G~ 

The formal ground state of L is 

ex,  .4 ~+-7-) (5.12) 

This is only a formal ground state because it is not normalizable at r/= 0. 
Usually, in bottomless potentials, p is not normalizable at r/= oe. We 
define S to be multiplication by exp(G~/2) and further define the 
"SchrSdinger" Hamiltonian H 

where 

d 2 
H =  - S L S - 1  . . . .  ~- W~, (5.13) 

art 2 

W _ !~,2__ • 
- -  4 ~  2~ 
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Call 0 < l~ ~< t 2 ~ ..- the eigenvalues of H, and/~, the eigenstate correspond- 
ing to l.. We now proceed as in ref. 6 with slight modifications. Because the 
potential is bottomless at ri = 0 instead of 7/= m (as in ref. 6), we introduce 
L, the Green function of the Fokker-Planck equation with a vanishing 
current at infinity, namely 

- L.w(ri, rio ) = 6(r/ - rio) 

This is explicitly given by 

f o  in(r/,~o) w(ri, r/o) = exp[ -- G=(r/)] exp[G~(y)] dy (5.14) 

For large ri, this reduces to a constant times e -a(") and has a vanishing 
current. Then we define the transform of w under S, 

G~(r/!'l s176 dy (5.15) 
r = (Sw)(r/) = exp ( 2 J o 

This function satisfies 

H~,o(ri) = exp ( ~ )  ~5(r/- rio) 

so that it can be written as 

r176 ~ u'(ri)u"(ri~ 
\--2--1 . = ~  / .  

(5.16) 

We know that 

(ff~o(ri)l H I~,o(ri)) 
ll ~< y(r/0) ~ (5.17) 

Now 

(~k~o I H I~k~o ) = f ff~o(r/) ea("~ - rio) dri = f~o exp[G=(y)] dy (5.18) 

From (5.17), (5.18), and (5.15), we obtain 

S~ ~ e G~ dy 
Ii ~< Y(rio) = j'~o dr/ . , -~ i'mir~(n,~o) eG=(y) 

" , a o  dY) 2 
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We obtain the best estimate with the choice of 1/o such that 

max G= = G=(r/o) 

For large a, this is 

Gaveau and Schuiman 

r/o ~ (2~) ~/2 

and, as shown in Appendix B, we obtain 

7(qo) "~ Cot2 exp(-  c~2/2) 

where C is a constant. 

Remark. F o r ~  + ~ ,  we define r/'=r//v/~. In terms oft/' 

V=(t/)=8~3t/'2 41 +--8-~3( t/t6x~ 0~t] ,2 ~ , 2  __ ?],4 "q-T; (5.19) 

The dominant behavior is given by 

,6 
W(r/') -= t/'2 - r/" + ~ (5.20) 

which has a maximum at t / '= x/~ and minima at t/ '= 0 and t/ '= x/~. 
The shape of V= is given in Fig. 4. 

A P P E N D I X  A 

In this Appendix, we give details of the calculation of the spectrum of 
the Schr6dinger equation 

I 
1 d 2 A 

We define 

where 

= (2B) 1/2 r 2, E =  (2B) a/2 e, f =  e-r 

1 A 
a ( a -  1 ) + ~ - ~ - = 0  

By substitution it follows that z satisfies a hypergeometric equation 

~z"+(2a  1 ~ ) z , +  ~ 1 o 
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The solution that is regular at ~ = 0 is the degenerate hypergeometric series 

4 

This series is in fact a polynomial for 

1 
. . . .  a = integer t> 0 
2 4 

The lowest state is 

or  

e=�89 2a 

E =  (2B) 1/2 [1 + (�88 + 2A) m]  

A P P E N D I X  B 

In this Appendix (to Section 5) we obtain an upper bound for the 
quantity 

S~ ~ aq' exp [G~(q')] 
7(t/o) = S~ d r / exp[_  ~ t,,~l:fmi,~(~,,o).g.,,exp[G=(tl,)]}2 (B.1) 

" ~ : ~ , ' l ; I J  LjO ~'1 

First note that 

has zeros at 
minimum of 

G'~OI) =i+ r/3 
t/ -~-- at/ 

1/c~ 1/2 and (2~) 1/2 which are respectively a maximum and a 

17 4 at/2 
G=(t/) -- log t /+  8 2 

The point (2~) I/2 is the bottom of a metastable well with a barrier at  1/~ 1/2 

and an infinite sink for r/ to the left of this barrier. The quantity 7(r/o ) is the 
metastable rate constant for this problem. 

As in ref. 6, we choose r/o at the location of the metastable well, namely 
t/0 = (2a) 1/2. We need to estimate 

I o - - i ]  ~ exp[G=O/)] d~ 
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Define r/= (2~)1/2 y and y2 = u. Then 

I o = e  exp[c~2(-u + u2/2)] du~ 1/~ (t3.23 

where we have used the fact that -u + u2/2 has a minimum at u = 1 and 
on [0, 1 "l has its maximum at u = 0. 

We next estimate the denominator of (B. l ). We split the integration as 
follows: 

dr/exp[ - G=(r/)] dr/' exp[G=(r/')] 
"J0 

+ [ d r / exp [ -G , ( r / ) ]  dr/' exp[G~(r/')] (B.3) 
J( 2=)I/2 

The asymptotics of 12 is straightforward: 

I2= I~ f(2~),/2 dr/ exp[-G~,(rl) ] = I2 fl~176 q-f-exp [-o~2 (-y2 + Y---~) ] 

The quantity _ y 2 + y 4 / 2  has a minimum at 1, so that 

oo y4 ( 7Z "~,/2 
fl~exp[--c~2(--y2+-~)},'~\-ff-s exp ( ~ )  

From (B.2) it follows that 

exp(e2/2) 

To estimate I x, we rewrite it with the definitions r / = ( 2 ~ ) m y ,  
(2c~)m y ', and u '=y  '2. Then 

1 dy y4--~ r 2,2 // b/t2Xl"]') 2 7exp['< (y -7)Jtfo du'exp[-~Ztu'--~-)J ~ 

(B.4) 

The behavior of the integral over u' depends on whether y ~ 1/e or y ~ 1. 
We therefore split I~ into two parts, I'1 and 1;', in which y runs from 0 to 
1/c~ and from 1/e to 1, respectively. Now 

[ (  f)lI;/ } Ii.N<c~ 2j0 dyy exp o~ 2 y2 _ du' <~ c~ ''71 (B.5) 
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On the other hand, 

u 2 2 1 
u - - -  c~ 2 - -  exp [e2 ( y 2 - - ~ ) ]  I"~{f2duexp[--~ 2)1}  fl/= dyy 

I f I dYexp[od(y2-Y---f) 1 
<~7 1/=y 

The function y4/2  - y2 has its minimum at y = 1, so that when :~ --+ oo 

' d y  ( 7"C ~ 1/2 fl/= yeXp[c~2(Y2-Y---2)]~\-~2] 

(The contribution at y= 1/c~ is exponentially small with respect to the 
contribution at y = 1.) Finally, 

e:e2/2 
I[ ~< const ~3 (B.6) 

We obtain a lower bound on I~' as well. We proceed as follows: 

. y4~]'- y2 exp(--~2u') ] 11 ~0{2 ~ Idl/~ dYexp[o~2(y2--fjj[foy du' 2 

1 - e  -1  fl dy y4 
/> a 2  / q/= y exp Icd (Y2- '~- ) ]  

B u t  

[(  4)1 c~ / -f-exp cd y 2 -  T ~ 

Finally, we see that 

const  
11/> ~ exp (B.7) ~3 

exp ( ~ )  

From (B.6) and (B.7) 

C1 /a2\  ,, C2 
a---3-exp ~-~-)~ I, ~<~-exp ( ~ )  

with C1 and C2 constants. 
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We bring together all the preceding results to give 

lo a2exp ( _  _~) 
~(,7o) = I'1 + :~' + / 1  (B.8) 
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